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The residence-time distributions of particles in the lifting post of a circulating boiling bed were calculated on
the basis of a model of longitudinal mixing of particles in this bed. It is shown that this model is well ap-
proximated by the standard γ-distribution. The dependence of the residence-time distribution function on the
main parameters of the circulating boiling bed has been determined. The calculated and experimental distri-
bution functions were compared.

Introduction. Reactors with a boiling bed or a circulating boiling bed, operating in the uninterrupted-cycle re-
gime, have, along with unquestionable advantages, a common drawback — different particles are characterized by dif-
ferent times of residence in the active zone of such a reactor [1, 2]. The difference between the residence times of
solid-material particles can be reduced by organization of their recirculation; however, the residence-time distribution
of particles in a circulating boiling bed remains inhomogeneous.

The aim of the present work is to determine the residence-time distribution function (RTDF) of particles in
the post of a circulating boiling-bed on the basis of the model of longitudinal mixing of particles in a circulating boil-
ing bed, formulated in [3], and the dependence of this function on the characteristics of the system, including the
height of the near-bottom zone of a boiling bed, in which a practically ideal mixing of particles is realized.

The RTDF is determined as [1]

E (t) = 
ρ (H) wS

m0
 c (t, H) , (1)

where m0 is the amount of a labeled material introduced into the lower zone of a circulating boiling bed. At Js =
ρ(H)w, dependence (1) takes the form

E (t) = 
JsS

m0
 c (t, H) . (2)

The quantities m0 and c(t, H) should be determined with allowance for the conditions under which  the labeled mate-
rial is introduced into the lower part of the circulating boiling layer.

Instantaneous Introduction of a Labeled Material. This ideal case is most suitable for investigating the
function E(t). The value of m0 is determined from the formula

m0 = ρfbc0HfbS . (3)

Then, from (2), we obtain

E (t) = 
Js

ρfbHfbc0
 c (t, H) . (4)
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Expression (4) relates the desired function E(t) to the output concentration of the labeled particles c(t, H) and
the parameters of a circulating boiling bed and its near-bottom zone (Js, Hfb, ρfb). The value of a circulating particle
mass flow Js is an independent parameter, and Hfb and ρfb are determined as [4]

Hfb
 ⁄ H = 1.25Frt

−0.8
Js

−1.1
 , (5)

ρfb
 ⁄ ρs = 0.33Frt

−0.045
 . (6)

Taking into account (5) and (6), we obtain the following expression for E(t):

E (t) = 2.4Frt
0.85

 J
_

s
 −0.1

 
c (t, H)

c0
 
u − ut

H
 , (7)

and, for the dimensionless RTDF,

E (t) = E (t) H ⁄ (u − ut) = 2.4Frt
0.85

 J
_

s
 −0.1

 
c (t, H)

c0
 . (8)

The function c(t, H) is determined by solving the problem on the longitudinal mixing of particles under cor-
responding boundary conditions. It has been shown in [3] that a mixing process is defined by the system of equations

Aρ1 
∂c1

∂t
 + Aρ1u1 

∂c1

∂x
 = β∗ ρ (c2 − c1) , (9)

Bρ2 
∂c2

∂t
 − Bρ2u2 

∂c2

∂x
 = (β∗ ρ + Aρ1 β1) (c1 − c2) . (10)

The following boundary conditions define the instantaneous introduction of the labeled material:

c1 (0, x) = c2 (0, x) = 0 ;   c1 (0, Hfb) = c0 ;

x = H ,   c1 = c2 ; (11)

x = Hfb ,   ρfbHfb 
∂c1

∂t
 + Aρ1u1c1 − Bρ2u2c2 = 0 .

Let us write system (9)–(11) in the dimensionless form [3]:

∂c1

∂t ′
 + u1

 ′ 
∂c1

∂x ′
 = 

1

Pe
 

u1
 ′ + u2

 ′

u2
 ′ + (x ′)0.82

 (c2 − c1) , (12)

∂c2

∂t ′
 − u2

 ′ 
∂c2

∂x ′
 = 

1

Pe
__ 

u1
 ′ + u2

 ′

u1
 ′ + (x ′)0.82

 (c1 − c2) , (13)

c1 (0, x ′) = c2 (0, x ′) = 0 ;   c1 (0, Hfb
 ′ ) = c0 ;
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x ′ = 1 ,   c1 = c2 ;

x ′ = Hfb
 ′  ,   mHfb

 ′  
∂c1

∂t ′
 + 

u2
 ′ + (H0

 ′)0.82

u1
 ′ + u2

 ′
 u1

 ′c1 − 
u1

 ′ − (Hfb
 ′ )0.82

u1
 ′ + u2

 ′
 u2

 ′c2 = 0 ,

(14)

here, the quantities u1 ′, u2 ′, and m are calculated by the formulas [3]

u1
 ′ = 1 ,   u2

 ′ = 0.1Frt
−0.7

 ,   m = 0.4Frt
−0.7

 J
_

s
 −0.1

 . (15)

Taking into account (5) and (15), we will obtain the following critical equation for the residence-time distri-
bution of particles (8):

E ′ (t ′) = ϕ (Frt, J
_

s, Pe, t ′) , (16)

from which it is evident that the dimensionless RTDF is determined by the three dimensionless quantities Frt, J
_

s, and Pe.

Fig. 1. Dimensionless RTDF obtained for different Pe numbers: a) instantaneous
introduction of a labeled material; b) introduction of a labeled material for a fi-
nite time internal ∆t = 0.4 sec (Pe = 0 (1), 0.005 (2), 0.01 (3), 0.05 (4), 0.1
(5), 1 (6), 2 (7), 5 (8), 10 (9), and 100 (10)). Frt = 0.156, J

_
s = 0.02, c0 = 1.
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The boundary problem (12)–(14) was solved numerically by the method of finite differences. Figure 1a shows
the change in the RTDF with change in the Peclet number Pe. In the case where Pe = 0, c(t ′, 1) was calculated by
the formula

c = c0 exp − 2.4Frt
0.85

, J
_

s
 −0.1

 (t ′ − td
 ′) , (17)

which represents, when the delay time td is taken into account, a solution of the equation

ρfbHfb 
dc
dt

 + Jsc = 0 . (18)

Note that (18) follows from the boundary condition (11) at the point x = Hfb at c1 = c2 = c. The dimensionless delay
time is determined by the dependence [3]

td
 ′ = 5.5 1 − (Hfb

 ′ )0.18
 . (19)

For analytical representation of the family of curves shown in Fig. 1a, we used the standard γ-distribution [5]:

E ′ (t ′) = Λ 
βα

Γ (α)
 (t ′)α−1

 exp (− β (t ′ − τ)) . (20)

The parameters Λ, α, β, and τ, determined for different values of the Pe number by the method of least squares, are
presented in Table 1. In Fig. 2, the approximation function E ′(t ′), calculated by (20), is compared with the function
obtained as a result of the numerical solution of (12)–(14).

TABLE 1. Parameters of the γ-Distributions

Pe Λ α β τ ∆, %
0 1.19 0.91 0.47 2.05 2.14

0.005 0.92 1.88 1.37 1.79 1.56
0.01 0.93 2.00 1.35 1.70 1.37
0.05 0.94 2.24 1.21 1.36 0.90
0.1 0.94 2.21 1.10 1.18 0.75
0.5 0.95 1.68 0.75 0.91 0.46
1 0.95 1.36 0.60 0.91 0.38
2 0.92 1.18 0.57 0.91 1.04
5 0.86 1.10 0.64 0.91 2.09

10 0.83 1.08 0.70 0.91 2.62

Fig. 2. Comparison of the RTDFs calculated by 1) (12)–(14) and 2) (20).
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Figures 3 and 4 show the evolution of the RTDF with change in the quantities Frt and J
_

s. Of special inter-
est are the dependences E ′(t ′) obtained for different values of J

_
s, which are presented in Fig. 3a and b. As follows

from (5), the quantity J
_

s determines the height of the near-bottom boiling layer at a constant value of Frt. As has al-
ready been intimated, in this region there arises an ideal mixing of particles characterized by the exponential depend-
ence E ′(t ′) [6]. Because of this, with increase in J

_
s, the RTDF approaches, in shape, an exponential function.

Introduction of a Labeled Material for a Definite Time. This case corresponds to the actual experimental
conditions under which the RTDF is determined. It is assumed that a labeled material is introduced with a constant
mass rate j into the near-bottom layer of a circulating boiling bed for the time ∆t. In this case, the value of m0 in (2)
is equal to

m0 = j∆tS . (21)

It follows from (2) that

E (t) = 
Js

j∆t
 c (t, H) , (22)

and, for the RTDF in dimensionless form, we obtain

Fig. 3. Dimensionless RTDFs obtained for different values of J
_

s at c0 = 1,
Frt = 0.156, and Pe = 0.1 (a) and Pe = 1 (b): J

_
s = 0.1 and Hfb/H = 0.44 (1);

0.02 and 0.074 (2); 0.002 and 0.0059 (3); 0.0002 and 0.00047 (4).

Fig. 4. Dimensionless RTDFs obtained for different values of Frt at c0 = 1, Pe
= 0.1, and J

_
s = 0.02: Frt = 0.04 (1), 0.156 (2), and 0.6 (3).
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E ′ (t) = E (t) ∆t = 
Js

j
 c (t, H) . (23)

The value of c(t, H) was determined using Eqs. (9) and (10) with boundary conditions differing from the boundary
conditions (11):

c1 (0, x) = c2 (0, x) = 0 ;   x = H ,   c1 = c2 ;   x = Hfb ;

a) t ≤ ∆t :   ρfbHfb 
∂c1

∂t
 + Aρ1u1c1 − Bρ2u2c2 = j ;

b) t > ∆t ;   ρfbHfb 
∂c1

∂t
 + Aρ1u1c1 − Bρ2u2c2 = 0 .

(24)

Figure 1b presents the results of calculating E ′(t ′) by (23) at Js = j and ∆t = 0.4 sec. In the case where Pe
= 0, c(t ′, 1) was determined as

a) td ≤ t ≤ td + ∆t :   c (t ′, 1) = 1 − exp − 2.4Frt
0.85

 J
_

s
 −0.1

 (t ′ − td
 ′) ; (25)

b) t > td + ∆t :   c (t ′, 1) = c0 exp − 2.4Frt
0.85

 J
_

s
 −0.1

 (t ′ − td
 ′ − ∆t ′) , (26)

where c0 = 1 − exp (− 2.4Frt
0.85 J

_
s
 −0.1∆t ′). The quantity td

 ′ was determined from (19). Formula (25) is a solution of the
equation

ρfbHfb 
dc
dt

 + Js c = j , (27)

following from the boundary condition a) in (24) at c1 = c2 = 0 and c(td) = 0. Note that expression (26) is identical
to (17).

Figure 5 shows the calculated RTDFs compared with the experimental ones obtained in [7]. It is seen that the
calculated and experimental functions agree best at large Pe numbers (10–100), which corresponds to the values of the

Fig. 5. Comparison of the experimental RTDF (points) [7] with the RTDFs
calculated by (9), (10), and (24)–(26) at Frt = 0.45 and J

_
s = 0.0057. Designa-

tions 1–10 are identical to those in Fig. 1.
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transfer coefficient β∗ C 0.01–0.1 1/sec. They correlate well with the value of β∗ = 0.07 1/sec obtained in [3] as a
result of the processing of experiential data on mixing of particles.

Conclusions. It has been shown that the model of longitudinal mixing of particles in a circulating boiling bed
proposed in [3] allows one to determine the RTDF and the influence of the main dimensionless parameters Frt, J

_
s, and

Pe on it. The RTDFs obtained are well approximated by the standard γ-distribution. The influence of the near-bottom
boiling layer on the RTDF has been determined (Fig. 3). Comparison of the calculated and experimental RTDFs (Fig.
5) allowed us to estimate the coefficient of transfer of particles between the core of a circulating boiling bed and its
ring zone: β∗ = 0.01–0.1 1/sec. These values correlate well with the value of β∗ determined earlier.

NOTATION

A, part of the horizontal cross section of the post of a circulating boiling bed occupied by rising particles
(core of the bed); B, part of the horizontal cross section of the post occupied by particles moving down (ring zone);
c1 and c2, dimensionless concentrations of labeled particles in the core of the bed and in its ring zone; c0, initial dimen-

sionless concentration of labeled particles in the near-bottom boiling bed; E ′′(t ′) = E ′(t ′)/(1 − exp (−2.4Frt
0.85 J

_
s
 −0.1∆t ′));

Frt = (u − ut)/gH, Froude number; g, free fall acceleration, m/sec2; H, height of the post; Hfb, height of the near-bot-

tom boiling layer, m; Hfb
 ′  = Hfb/H, Js, circulating mass flow, kg/(m2⋅sec); J

_
s = Js

 ⁄ ρs(u − ut); Pe = (u − ut)/β∗H, Pe
__

 =

Pe ⁄ 



1 + 0.82

u1
 ′ u2

 ′

u1
 ′ + u2

 ′
 Pe

1

x ′




, Peclet number; S, cross-section area of the post, m2; t, time, sec; t ′ = t(u − ut)/H, dimen-

sionless time; u, rate of gas filtration, m/sec; ut, velocity of travel of an individual particle, m/sec; u1
 ′ = u1/(u − ut),

u2
 ′ = u2/(u − ut), dimensionless velocities of particles; w = Js

 ⁄ ρ(H), transport velocity of a particle at the output of the

post, m/sec; x, vertical coordinate, m; x ′ = x/H; β∗, coefficient of transfer of labeled particles, 1/sec; β1 = −
u1

Aρ1
 

dAρ1

dx
, coefficient accounting for the directed flow of particles from the core of the bed to the ring zone, 1/sec; Γ(α),

gamma function; ρ1 and ρ2, density of the bed at the core and in the ring zone, kg/m3; ρ = Aρ1 + Bρ2, average den-

sity of the bed, kg/m3. Subscripts: 1, core of the bed; 2, ring zone; d, delay; fb, near-bottom boiling layer; s, particles;
t, condition of travel of an individual particle.
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